NCB | 蒋争凡团队发现STING蛋白相分离形成内质网立方膜结构调节天然免疫
责编丨兮
参考文献
1 Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18, 285-298, doi:10.1038/nrm.2017.7 (2017).
2 Boeynaems, S. et al. Protein Phase Separation: A New Phase in Cell Biology. Trends Cell Biol 28, 420-435, doi:10.1016/j.tcb.2018.02.004 (2018).
3 Nott, T. J. et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57, 936-947, doi:10.1016/j.molcel.2015.01.013 (2015).
4 Zeng, M. et al. Phase Transition in Postsynaptic Densities Underlies Formation of Synaptic Complexes and Synaptic Plasticity. Cell 166, 1163-1175 e1112, doi:10.1016/j.cell.2016.07.008 (2016).
5 Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, doi:ARTN eaaf438210.1126/science.aaf4382 (2017).
6 Brangwynne, C. P. et al. Germline P Granules Are Liquid Droplets That Localize by Controlled Dissolution/Condensation. Science 324, 1729-1732, doi:10.1126/science.1172046 (2009).
7 Patel, A. et al. A Liquid-to-Solid Phase Transition of the ALS Protein FUS Accelerated by Disease Mutation. Cell 162, 1066-1077, doi:10.1016/j.cell.2015.07.047 (2015).
8 Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336-340, doi:10.1038/nature10879 (2012).
9 Wang, Z. & Zhang, H. Phase Separation, Transition, and Autophagic Degradation of Proteins in Development and Pathogenesis. Trends Cell Biol 29, 417-427, doi:10.1016/j.tcb.2019.01.008 (2019).
10 Pappas, G. D. & Brandt, P. W. Mitochondria. I. Fine structure of the complex patterns in the mitochondria of Pelomyxa carolinensis Wilson (Chaos chaos L.). J Biophys Biochem Cytol 6, 85-90, doi:10.1083/jcb.6.1.85 (1959).
11 Snapp, E. L. et al. Formation of stacked ER cisternae by low affinity protein interactions. J Cell Biol 163, 257-269, doi:10.1083/jcb.200306020 (2003).
12 Schaffner, F., Dienstag, J. L., Purcell, R. H. & Popper, H. Chimpanzee livers after infection with human hepatitis viruses A and B: Ultrastructural studies. Arch Pathol Lab Med 101, 113-117 (1977).
13 Kostianovsky, M., Orenstein, J. M., Schaff, Z. & Grimley, P. M. Cytomembranous inclusions observed in acquired immunodeficiency syndrome. Clinical and experimental review. Arch Pathol Lab Med 111, 218-223 (1987).
14 Lee, S., Harris, C., Hirschfeld, A. & Dickson, D. W. Cytomembranous inclusions in the brain of a patient with the acquired immunodeficiency syndrome. Acta Neuropathol 76, 101-106, doi:10.1007 /bf00687686 (1988).
15 Kaup, F. J., Bruno, S. F., Matz-Rensing, K. & Schneider, T. Tubuloreticular structures in rectal biopsies of SIV-infected rhesus monkeys (Macaca mulatta). Ultrastruct Pathol 29, 357-366, doi:10.1080/019131290968740 (2005).
16 Sun, L. et al. Coronavirus papain-like proteases negatively regulate antiviral innate immune response through disruption of STING-mediated signaling. PLoS One 7, e30802, doi:10.1371/journal.pone. 0030802 (2012).
17 Gao, D. et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341, 903-906, doi:10.1126/science.1240933 (2013).
18 Schaff, Z., Eder, G., Eder, C. & Lapis, K. Ultrastructure of normal and hepatitis virus infected human and chimpanzee liver: similarities and differences. Acta Morphol Hung 40, 203-214 (1992).
19 Almsherqi, Z. A., McLachlan, C. S., Mossop, P., Knoops, K. & Deng, Y. Direct template matching reveals a host subcellular membrane gyroid cubic structure that is associated with SARS virus. Redox Rep 10, 167-171, doi:10.1179/135100005X57373 (2005).
20 Chong, K. & Deng, Y. The three dimensionality of cell membranes: lamellar to cubic membrane transition as investigated by electron microscopy. Methods Cell Biol 108, 319-343, doi:10.1016 /B978-0-12-386487-1.00015-8 (2012).
21 Almsherqi, Z. A., Landh, T., Kohlwein, S. D. & Deng, Y. Chapter 6: cubic membranes the missing dimension of cell membrane organization. Int Rev Cell Mol Biol 274, 275-342, doi:10.1016 /S1937-6448(08)02006-6 (2009).
22 Zhao, Z. et al. Mn(2+) Directly Activates cGAS and Structural Analysis Suggests Mn(2+) Induces a Noncanonical Catalytic Synthesis of 2'3'-cGAMP. Cell Rep 32, 108053, doi:10.1016/j.celrep.2020. 108053 (2020).
23 Hooy, R. M., Massaccesi, G., Rousseau, K. E., Chattergoon, M. A. & Sohn, J. Allosteric coupling between Mn2+ and dsDNA controls the catalytic efficiency and fidelity of cGAS. Nucleic Acids Res 48, 4435-4447, doi:10.1093/nar/gkaa084 (2020).
24 Wang, C. et al. Manganese Increases the Sensitivity of the cGAS-STING Pathway for Double-Stranded DNA and Is Required for the Host Defense against DNA Viruses. Immunity 48, 675-687 e677, doi:10.1016/j.immuni.2018.03.017 (2018).
25 Chen, Q., Sun, L. & Chen, Z. J. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol 17, 1142-1149, doi:10.1038/ni.3558 (2016).
26 Xu, M. M. et al. Dendritic Cells but Not Macrophages Sense Tumor Mitochondrial DNA for Cross-priming through Signal Regulatory Protein alpha Signaling. Immunity 47, 363-373 e365, doi:10.1016/j.immuni.2017.07.016 (2017).
27 Lv, M. et al. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res 30, 966–979, doi:10.1038/s41422-020-00395-4 (2020).
28 Song, Y. et al. Manganese enhances the antitumor function of CD8(+) T cells by inducing type I interferon production. Cell Mol Immunol, doi:10.1038/s41423-020-00524-4 (2020).
29 Hou, L. et al. Manganese-Based Nanoactivator Optimizes Cancer Immunotherapy via Enhancing Innate Immunity. ACS Nano 14, 3927-3940, doi:10.1021/acsnano.9b06111 (2020).
30 Wang, C. et al. Maintaining manganese in tumor to activate cGAS-STING pathway evokes a robust abscopal anti-tumor effect. J Control Release 331, 480-490, doi:10.1016/j.jconrel.2021.01.036 (2021).
31 Du, M. & Chen, Z. J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 361, 704-709, doi:10.1126/science.aat1022 (2018).
32 Zhou, W., Mohr, L., Maciejowski, J. & Kranzusch, P. J. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Mol Cell 81, 739-755 e737, doi:10.1016/j.molcel.2021.01.024 (2021).
转载须知
【非原创文章】本文著作权归文章作者所有,欢迎个人转发分享,未经允许禁止转载,作者拥有所有法定权利,违者必究。